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The morphological evolution of an initially straight stripe assimilated to a straight line of infinite length
lying on a semi-infinite substrate has been investigated in the linear regime when the mass transport mecha-
nism is the diffusion of adatoms along stripe edges and when the heteroepitaxy between the line and the
substrate is taken to be anisotropic. It is found that contrary to the isotropic case where serpentine-like
morphology is favored, antiphase fluctuations grows faster than in-phase ones for selected values of epitaxial
stress components such that a pinched shape preferentially emerges.
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Understanding morphological instabilities of surfaces
submitted to an external field is a key point for developing
nanostructured materials. Vicinal surfaces are known to ex-
hibit morphological instabilities induced by many different
driving forces. It is for instance the case during step flow
growth where according to the relative properties of diffu-
sion of adatoms on the terraces and their incorporation in the
steps, in-phase step meandering or step-bunching can be pre-
dicted and observed �see �1,2� and review �3��. Likewise, an
external electric field may drive kinetic instabilities �4–9�.
The final surface morphology �bunching, meandering �3�, or
even faceting �10�� depends upon the current direction, and
the sample temperature as illustrated for silicon �11� where
for a given current direction, bunching supersedes meander-
ing above a critical temperature. Another driving force for
instabilities is elasticity �for reviews see �3,12��. Indeed, ex-
ternally applied stresses or epitaxial stresses modify the elas-
tic interactions between steps which thus engender different
surface configurations. In particular, the effect of stress on
step meandering has been investigated for homoepitaxy
�13,14�. In the case of isotropic heteroepitaxy, it has been
found that elasticity favors the development of out-of-phase
fluctuations for the step profiles with a phase shift of � �15�.

In this work, one focuses on stress-driven instabilities of a
straight line epitaxially stressed on a semi-infinite substrate
which can model monaoatomic stripes but also higher struc-
tures �but still at the nanoscale�. The formation of such
stripes has been observed in many experimental situations.
The formation of arrays of parallel Fe stripes have been for
example observed on Cu�111� substrates �16–18� and has
been modeled by means of molecular dynamic simulations
�19�. Likewise, monoatomic Co wires have been realized on
vicinal Pt�997� surfaces �20,21�. The formation of regularly
spaced stripes have been also observed on Cu�110�− �2
�1�O surfaces from the rearrangement of anisotropic islands
�22� as well as nanowires on the surface of thin carbon films
which have been produced using electron-beam-induced
deposition techniques �23�. The effects of different stresses

on the shape of nanostructures such as stripes, islands and
dots have been investigated in the framework of continuum
elasticity theory �13,24–27�. When surfaces reconstruct with
broken orientational symmetry for example, it has been
found that the formation of striped domains may be favor-
able depending on intrinsic stress, the periodicity of these
domains when they exist being then determined �28�. The
development of thin films on substrates with particular di-
electric or magnetic properties has also shown that aniso-
tropic heteroepitaxial stresses may arise resulting from the
difference between the lattice networks of the films and the
substrates, from crystallographic disorientations at the inter-
faces or due to defects such as misfit dislocations leading to
nonhomogeneous strain relief along the different crystallo-
graphic directions �29,30�. In the context of nanoelectronics,
recent papers have been devoted to the fabrication at higher
scale of strained lines �width: a few tens of nm, height:
roughly 10 nm, and length: 1 mm�, the control of their sta-
bility being of great importance in transistor technology
�31,32�.

For the sake of simplicity, a single epitaxially stressed
stripe of infinite length is considered in this Brief Report
when the stripe evolves at constant volume by edge diffu-
sion. It is believed that the main results obtained in this work
concerning the effects of anisotropic stress on the nanostruc-
ture morphology would be generalized to the more complex
configuration where several stripes are growing �or shrink-
ing� in presence of diffusion currents on the surface like
during step flow growth �or sublimation� regime. In the fol-
lowing, the effects of stress resulting from an anisotropic
heteroepitaxy between the stripe and the substrate has been
modeled within the framework of force monopole approxi-
mation and linear elasticity. The possibility of formation of
pinched or serpentine-like shapes by edge diffusion under the
action of the resulting biaxial stresses is discussed.

A line of width l, height h, and infinite length is consid-
ered on a semi-infinite substrate in the general case where the
heteroepitaxy between the stripe and the substrate is aniso-
tropic �see Fig. 1 for axes�. To model the elastic effects in the
stripe and the substrate resulting from the anisotropic epitaxy
along the �Ox� and �Oy� directions, the following distribu-*jerome.colin@univ-poitiers.fr
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tion of force monopoles along the kth stripe edge is consid-
ered �13,15,24–26,28,33�

fx
�k���� = − h�xx

0 ��� − �k�nx
�k�, �1�

fy
�k���� = − h�yy

0 ��� − �k�ny
�k�, �2�

with �= �x ,y�, �k= �xk ,yk� is the position of the kth edge, � is
Dirac’s function, n�k� is the outward normal to edge k, �xx

0

and �yy
0 are the two constant epitaxial stress components, and

k=1,2. Notice that the surface stress contribution has been
neglected in Eqs. �1� and �2�. This point will be discussed
later. A standard linear stability analysis of the stripe under
epitaxial stresses has been conducted. To do so, both edge
profiles are perturbed as follows x1=�1�y1�=� cos�qy1� and
x2= l+�2�y2�= l+� cos�qy2+�� with �, q, and � the ampli-
tude, wave number, and phase shift of the fluctuations, re-
spectively. The elastic energy due to the interactions between
both edges defined by �15,24–26,28,33�

Fel
int = − �

S
�

S

d2�d2��f i
�1����f j

�2�����	ij�� − ��� , �3�

has been then developed to the second order in perturbation
amplitude �, with S the substrate surface and 	ij���
=	ij�� ,z=0� the surface elastic Green’s function determined
for a semi-infinite solid in the framework of linear and iso-
tropic elasticity �33�. The self-energy term Fel

self ,i of each
edge i has also to be considered. It must be independent of
the phase shift between the two perturbations and has been
defined to the second order in � following the procedure used
to evaluate the elastic self-energy of a dipole of dislocations
�34�. In Eq. �3�, taking l=a with a a cut-off distance of the
order of the interatomic distance and using two in-phase per-
turbations �i�yi� for step i ,Fel

self ,i has been defined as Fel
self ,i

=−l /2Fel
int. It yields that the total elastic energy Fel=Fel

int

+Fel
self ,l+Fel

self ,2 cancels when two in-phase perturbed edges
are brought closer until the cut-off distance a. The elastic
contribution 
el

�2� to the chemical potential of edge 2,


el
�2� = �� �Fel

int

��2�y2�
+

�Fel
self ,2

��2�y2�
	 , �4�

has been then determined to the first order in � with � the
atomic area �15�. The heavy but straightforward derivation of


el
�2� is not detailed in the Brief Report. It yields


el
�2� =

2�1 + ���h�xx
0 �2�

�E

�l,�� −

1

2
�a,0���2�y2� , �5�

with

�x,�� =
1

x2�
−�

+� �15�1 − ���
�1 + z2�7/2 +

3 − 18� + 15��

�1 + z2�5/2

+
3� − 1 − 2��

�1 + z2�3/2 �1 − cos���cos�qxz��dz

+ cos���
q

x
�

−�

+� � �� − ���z

�1 + z2�3/2

+
3�1 − ����z

�1 + z2�5/2 sin�qxz�dz , �6�

where E is the Young modulus, � the Poisson’s ratio and �
=�yy

0 /�xx
0 the ratio of stress components characterizing the

anisotropy of the epitaxy. Using Eqs. �5� and �6�, the elastic
contribution to the chemical potential of edge 2 has been
finally found to be


el
�2� =

4�1 + ���h�xx
0 �2�

�El2 ���q̃,�� −
1

2ã2��ãq̃,0��2�y2� ,

�7�

with

��x,�� = 1 − � + x�x�� − 1��1 + � − 2��K0�x�

+ �− 1 + �1 − x2�� − 1�2���K1�x��cos��� , �8�

q̃=ql, ã=a / l, and K0 and K1 are the modified Bessel’s func-
tions of second kind of the zero and first order, respectively.
An equivalent expression holds for 
el

�1�, the elastic contribu-
tion to the chemical potential of edge 1. The contribution to
the chemical potential 
2 of the edge line free energy is

 fr

�2�=���2�y2�, with � the edge stiffness and �2 the local
curvature of edge 2 taken to be positive for a convex profile.
To the first order in �, it yields 
 fr

�2�=��q̃2�2�y2� / l2. The
chemical potential of edge 2 is then given by


2 = 
 fr
�2� + 
el

�2�,

=
��

l2 
q̃2 + ����q̃,�� −
1

2ã2��ãq̃,0���2�y2� , �9�

with �=4�1+���h�xx
0 �2 / ��E��. Assuming now that atoms

diffuse along both edges, the normal velocity of edge 2 is
�14�

vn2
= aL��s2

DL�s2
� 
2

kBT
	 , �10�

with aL the lattice spacing, DL the mobility of atoms taken to
be constant along both edges of the stripe, s2 the arclength
along the edge 2, kB the Boltzmann’s constant and T the
absolute temperature. Introducing the expression of 
2 �see
Eq. �9�� in Eq. �10�, the evolution of the perturbation ampli-
tude versus the dimensionless time �=aLDL�� / �l4kBT�t is

FIG. 1. �Color online� Top view of a morphologically unstable
stripe of width l epitaxially stressed on a substrate. Along the ith
edge �with i=1,2�, two distributions of force monopoles fx

�i� and fy
�i�

are considered to model the effects onto the development of edge
fluctuations of the two constant stress components �xx

0 and �yy
0 re-

sulting from the anisotropic epitaxy.
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d�

d�
= �G�q̃,�� , �11�

with G the growth rate of the perturbation,

G�q̃,�� = q̃2
− q̃2 + �� 1

2ã2��ãq̃,0� − ��q̃,��� . �12�

The resolution of the surface diffusion equation along edge 1
leads to the same expression of the fluctuation growth rate
as the one displayed in Eq. �12�. Since the variation of
the elastic contribution to the growth rate Gel�q̃ ,��
= q̃2���ãq̃ ,0� / �2ã2�−��q̃ ,��� versus � has been found to be
extremum for �=0 and �=�, only in-phase ��=0� and an-
tiphase ��=�� fluctuations have been studied in the follow-
ing. Taking ã=0.01 and �=0.3, it is found that when �=1,
Gel�q̃ ,�=0��Gel�q̃ ,�=�� and Gel�q̃ ,�=0��0 such that in-
phase fluctuations may grow faster than the antiphase ones in
the case of isotropic epitaxy. The range �q̃el

min, q̃el
max� of q̃ val-

ues for which antiphase fluctuations are dominating so that
Gel�q̃ ,�=��−Gel�q̃ ,�=0��0 and Gel�q̃ ,�=���0 has been
then displayed in Figs. 2�a� and 2�b� as a function of �. It can

be observed that for anisotropic epitaxial stresses such that
�� �−3.1,−1.92� and �� �1.2,3.1�, the pinched shape may
be, thus, selected. To determine now, in which conditions on
the full stress tensor ��xx

0 ,�yy
0 �, the development of perturba-

tions is favorable in the linear regime, the growth rate G
has been plotted in Figs. 3 as a function of q̃ for different
values of � and � coefficients. For the discussion, the
following two levels of stress are selected, �=0.19
or ��xx

0 �=�0.19�E� / �4�1+��� /h and �=1.6 or ��xx
0 �

=�1.6�E� / �4�1+��� /h which correspond to low and high
�xx

0 stress, respectively. In the case where the epitaxy is iso-
tropic ��=1�, the straight stripe remains stable for the lower
stress value �=0.19 since in Fig. 3�a�, G�0 whatever q̃ for
�=0 or �. In Fig. 3�b�, it is found that for higher stress ��
=1.6� and q̃� �q̃c

min, q̃c
max�, the growth rate of the in-phase

fluctuations is positive and greater than the growth rate of the
antiphase fluctuations so that the serpentine shape is kineti-
cally selected. For the anisotropic case ��=2�, two results
have to be underlined: �i� the stress anisotropy leads to stripe
instability even for lower stress ��=0.19� and �ii� the an-
tiphase growth rate is positive and greater than the in-phase
one for q̃� �q̃c

min, q̃c
max� such that now it is the pinched shape

(b)

(a)

FIG. 2. �Color online� Positive values of Gel�q̃ ,�=��
−Gel�q̃ ,�=0� in the �� , q̃� plane. �a� Case of positive stress ratio
�=�yy

0 /�xx
0 . �b� Case of negative �.

(b)

(a)

FIG. 3. �Color online� G as a function of q̃ for �=� and �=0.
�a� For �=0.19, case of isotropic epitaxy �=1 and anisotropic ep-
itaxy �=2. �b� For �=1.6, case of isotropic epitaxy �=1.
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which is kinetically selected in this particular range of q̃
values �see from Fig. 3�a��. It can also be emphasized that in
Eqs. �1� and �2�, surface stress has been neglected so that the
force amplitude does not depend on the width of the stripe.
For narrow stripes, surface stress presents some size depen-
dence so that, as shown in �35�, there should be fx

�k����
=−h�xx

0 �1+A / l����−�k�nx
�k� and fy

�k����=−h�yy
0 ���−�k�ny

�k�,
where A is a constant that can be determined from atomistic
calculation of surface stress tensor. In other words, surface
stress effects will enhance the anisotropic effect that has been
described in this Brief Report. Obviously the smaller the
local width, the greater this enhancement. It is thus clear that
surface stress should be taken into account in a complete
numerical study but can be neglected in the linear approach
where only the onset of the stripe instability is studied.

In this Brief Report, a linear stability analysis has been
performed to investigate the onset of the stress-induced de-

stabilization of a stripe. It is found that anisotropic heteroepi-
taxial stresses between a stripe and its substrate strongly
modify the morphological evolution of the stripe in its linear
regime of evolution. Although a serpentine-like stripe devel-
ops when the epitaxial stresses is isotropic, a pinched shape
preferentially emerges in the anisotropic case for selected
components of stress. Finally, it is believed that the numeri-
cal study of the nonlinear regime of the stripe evolution
would give relevant information on the selection of the final
morphology of the stripe on a large time scale and would
allow to produce a “phase diagram” characterizing the stripe
morphology in the ��xx

0 ,�yy
0 � plane whose the determination

is beyond the scope of the present work. In the configuration
where a pinched shape would be proved to emerge from the
nonlinear regime, it would also deserve to investigate the
possibility of final splitting of the stripe and of the formation
of a distribution of dots.
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